ARTIKEL/TESTS / Intel SSD 730 mit 480 GB im RAID-Test

Technologiewandel im NAND-Flash-Bereich

In den vergangenen Monaten haben viele Hersteller den Umstieg auf kleinere Strukturbreiten vollzogen und setzen vermehrt auf 20 nm Flashes, oder wie Crucial sogar bereits auf Speicher mit lediglich 16 nm Strukturbreite (siehe MX100 mit 256 oder 512 GB), die unter anderem eine Reduktion der Herstellungskosten erlauben (verglichen mit 25 oder 32 nm). Dies wird möglich, da durch den geringeren Platzbedarf mehr Chips aus einem 300 mm Silizium-Wafer gewonnen werden können und die Produktion insgesamt (kosten)effizienter abläuft. Dadurch entstehende preisliche Vorteile kann man mehr oder weniger direkt an den Endkunden weitergeben und für eine attraktive Preisgestaltung sorgen. Auch die Verfügbarkeit ist ein direkt davon abgeleitetes Thema. Crucial kann sich dabei direkt der Technologien und dem Know-How von Mutterkonzern Micron bedienen und hat gegenüber vieler Mitbewerber, die extern zukaufen müssen, deutliche Vorteile. OCZ gehört seit einigen Monaten zu Toshiba und hat dadurch ähnliche Vorzüge erhalten. Intel hat als weltweit agierender Chipgigant mit eigenen Produktionsstätten ohne vielfältige Möglichkeiten.

Doch wo Licht ist, ist bekanntlich auch Schatten: Nachteilig wirkt sich die Reduktion der Strukturbreite nämlich auf die Lebenserwartung der Speicherzellen aus, denn die maximal mögliche Anzahl von Schreib- und Löschzyklen (Program/Erase-Cycles) sinkt. Während beispielsweise bei einer Vertex 3 mit 29F64G08ACME2 NAND-Flashes (25 nm) noch 5.000 P/E-Cycles im Datenblatt nachzulesen waren, muss sich der Flash der Vertex 3.20 (29F16B08CCMF3, 20 nm) mit 3.000 Zyklen begnügen – was immer noch sehr viel ist. Ziel des Shrinks ist sowohl die Kosteneinsparung als auch die verbesserte Verfügbarkeit der Chips. Heutzutage sind Flash-Speicher ein fester Bestandteil in sehr vielen elektronischen Endprodukten (Smartphones, Tablets etc.) und der entsprechend steigende Bedarf lässt sich dadurch abfangen. TLC ist eine weitere Alternative.

Single-Level-Cell (SLC) Multi-Level-Cell (MLC) Triple-Level-Cell (TLC)
Bits per Cell 1 2 3
P/E-Cycles 100.000 3.000-5.000 1.000-1.500
Read Time 25 µs 50 µs 75 µs
Program Time 200-300 µs 600-900 µs ~900-1350 µs
Erase Time 1,5-2 ms 3 ms ~4,5 ms

Der größte Konkurrent des 1x nm MLC im günstigen Entry-Level heißt TLC und findet unter anderem bei aktuellen Drives von Samsung (SSD 840 Familie) Verwendung. TLC-Zellen (Triple-Level-Cell) sind in der Lage bis zu drei Bit zu speichern, die durch acht unterschiedliche Schaltzustände abgebildet werden. Dadurch kann eine deutlich höhere Speicherdichte erreicht werden, was wiederum die Kosten für entsprechende Endprodukte sinken lässt. Durch die höhere Anzahl unterschiedlicher Spannungsniveaus (TLC: 2^3 = 8 / MLC: 2^2 = 4) sind diese Zelltypen aber auch anfälliger für die Abnutzung und letztlich den Ausfall. Genaue Informationen über die Zuverlässigkeit sind aktuell nicht verfügbar, Samsung gibt jedoch drei Jahre Garantie auf entsprechende Laufwerke. Bei den maximal möglichen P/E-Cycles von TLC-Zellen spricht man zur Zeit von 1.000-1.500. Noch fehlen Langzeitstudien und Erfahrungswerte, da es sich um eine neue Technologie im SSD-Bereich handelt, die zudem bislang nur von sehr wenigen Herstellern in entsprechenden Endprodukten eingesetzt wird.

Modelle und Preise

Momentan ist die Intel SSD 730 in zwei Varianten erhältlich. Die verschiedenen Modelle verfügen über wahlweise 240 oder 480 GB Speicherkapazität und wechseln ab 165 bzw. 330 Euro den Besitzer (Quelle: Geizhals.de, Stand: 12/2014). Daraus ergeben sich Preise pro Gigabyte von jeweils 69 Euro-Cent, was einen vergleichsweise hohen Wert darstellt – mehr zur Preis/Leistung auf Seite 13 des Artikels. In der unten stehenden Tabelle sind alle wesentlichen technischen Eckdaten der Familie nachzulesen. Weitere Informationen zu unserem Testkandidaten erhalten Sie auf den nun folgenden Seiten des Tests.

Modell Random 4K Read Random 4K Write Sequential Read Sequential Write
480 GB 89.000 IOPS 74.000 IOPS 550 MB/s 470 MB/s
240 GB 86.000 IOPS 56.000 IOPS 550 MB/s 270 MB/s
Die 20 nm NAND-Flash-Speicher stammen aus Intels eigener Herstellung.

Die 20 nm NAND-Flash-Speicher stammen aus Intels eigener Herstellung.

Autor: Stefan Boller, Patrick von Brunn
Toshiba MG11ACA HDD mit 24 TB im Test
Toshiba MG11ACA HDD mit 24 TB im Test
Toshiba MG11ACA 24 TB

Mit der Cloud-Scale Capacity MG11ACA24TE stellte Toshiba erst kürzlich seine neue Enterprise-Festplatte mit satten 24 TB vor. Diese HDD ist das erste Modell der Familie mit 1 GB Puffer. Mehr dazu im Test.

Kingston FURY RENEGADE SSD 2 TB Review
Kingston FURY RENEGADE SSD 2 TB Review
FURY RENEGADE SSD, 2 TB

Die FURY RENEGADE ist eine SSD-Familie von Kingston, basierend auf einem PCI Gen4 Interface und Phison-Controller. Wir haben uns das Modell ohne Kühlkörper und mit 2 TB Speicherkapazität im Test ganz genau angesehen.

Samsung Portable SSD T9 mit 2 TB im Test
Samsung Portable SSD T9 mit 2 TB im Test
Samsung Portable SSD T9 2 TB

Mit der Portable SSD T9 bietet Samsung den Nachfolger der beliebten T7-Familie an. Die Drives verwenden ein USB 3.2 Gen2x2 Interface und bieten entsprechend hohe Datenraten bis 2 GB/s. Mehr dazu im Test der 2 TB Version.

TEAMGROUP T-FORCE Z44A7 1 TB im Test
TEAMGROUP T-FORCE Z44A7 1 TB im Test
TEAMGROUP T-FORCE Z44A7

Mit der T-FORCE Z44A7 hat Hersteller TEAMGROUP eine neue Gen4-SSD auf den europäischen Markt gebracht. Wir haben uns das Modell mit 1 TB Speicherplatz in der Praxis ganz genau angesehen.