Intels Forschungsabteilung gelang eine bedeutende Weiterentwicklung bei neuartigen Transistoren. Diese sogenannten Tri-Gate-Transistoren steigern nach eigenen Angaben sowohl die Leistungsfähigkeit als auch die Energie-Effizienz von zukünftigen Mikroprozessoren. Aufgrund der positiven Eigenschaften von Tri-Gate-Transistoren geht Intel davon aus, dass diese irgendwann nach der 45 nm Herstellungstechnik in zukünftigen Prozessoren zum Einsatz kommen könnten.
Planare Transistoren wurden in den 1950er Jahren entwickelt. Seitdem bilden sie den wichtigsten Baustein für Chips. Heute übliche Transistoren verfügen über lediglich eine flache Sperrschicht, das so genannte Gate. Die Halbleiter-Technologie stößt jedoch immer weiter in den Bereich der Nanotechnologie vor - also in Strukturdimensionen kleiner als 100 Nanometer. Jenseits dieser Schwelle können einige Transistoren-Elemente aus dünnen Schichten von nur noch wenigen Atomlagen bestehen. Ehemals flache Transistoren lassen sich nun dreidimensional aufbauen, um höhere Performance bei geringerem Stromverbrauch zu erreichen.
Intels Tri-Gate-Transistor nutzt eine solche dreidimensionale Struktur und verfügt über drei Gates. Die Struktur gleicht einem Plateau mit einer flachen Ebene oben und zwei vertikalen, steil abfallenden Flächen an den Seiten. Die elektrischen Signale fließen nicht nur entlang der Ebene, wie bei einem planaren Transistor, sondern auch entlang der beiden Seiten. Erste Tri-Gate-Transitoren stellte Intel schon 2002 im Forschungslabor her. Intel hat nun einen Weg gefunden, diese dreidimensionalen Transistoren, gemeinsam mit anderen wichtigen Halbleiter-Technologien einzusetzen.
Ein wesentlicher Vorteil der Tri-Gate-Transistoren ist, dass sie deutlich geringere Leckströme produzieren: Im Ruhezustand fließen weniger unerwünschte Ströme durch den Transistor. Das reduziert die Wärmeentwicklung und den Stromverbrauch von Prozessoren. Im Vergleich zu heutigen Transistoren mit 65 nm Strukturen weisen die weiterentwickelten, integrierten Tri-Gate-Transistoren mit High-k-Gate-Dielektrika und Strained Silizium folgende Eigenschaften auf: Die um 35 Prozent geringere Schaltleistung (Switching Power) erlaubt einen 45 Prozent höheren Steuerstrom (Drive Current/Switching Speed) für einen schnelleren Einschaltvorgang und damit höhere Taktfrequenzen oder um den Faktor 50 geringere Ströme im ausgeschalteten Zustand (Off-Current) für niedrigen Stromverbrauch.
Intel wird am 13. Juni 2006 auf dem VLSI Technology Symposium in Honolulu, Hawaii, ein Whitepaper zu diesen Forschungen vorstellen.
In der heutigen digitalen Welt ist moderne IT-Ausstattung für Unternehmen längst kein Luxus mehr, sondern eine Notwendigkeit. Doch mit der...
KIOXIA gab die Entwicklung des Prototyps seiner neuen PCIe-5.0-NVMe-SSDs der CD9P-Serie bekannt. Die SSDs der nächsten Generation sind mit dem...
Gespeicherte Solarenergie ist nicht nur eine umweltfreundliche Wahl – sie ist auch eine kluge Option für Haushalte, die ihre Stromrechnungen...
Möglicherweise haben Sie schon einmal ein Kraftwerk gesehen und fragen sich, wie es funktioniert. Es ist ein so kompaktes Gerät...
Mobile Games sind ein beliebter Zeitvertreib und oft kostenlos spielbar. Doch nichts im Leben ist wirklich frei und der Preis...
Mit der XLR8 CS3150 bietet PNY eine exklusive Gen5-SSD für Gamer an. Die Serie kommt mit vormontierter aktiver Kühlung sowie integrierter RGB-Beleuchtung. Wir haben das 1-TB-Modell ausgiebig getestet.
Die Armor 700 Portable SSD von Lexar ist gemäß Schutzart IP66 sowohl staub- als auch wasserdicht und damit perfekt für den Outdoor-Einsatz geeignet. Mehr dazu in unserem Test des 1-TB-Exemplars.
Mit der T-FORCE Z540 bietet Hersteller TEAMGROUP eine schnelle PCIe Gen5 SSD mit bis zu 4 TB Speicherkapazität an. Wir haben uns das 2-TB-Modell im Test angesehen und z.B. mit anderen Gen5-Drives verglichen.
Die Familie der Iron Wolf Pro NAS-Festplatten ist für Dauerbetrieb, Zuverlässigkeit und den Einsatz in Multi-Bay-Systemen ausgelegt. Wir haben das 24-TB-Modell durch unseren Parcours geschickt.